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The rate at which beneficial alleles fix in a population depends on the probability of and time to fixation of such alleles. Both of these quantities 
can be significantly impacted by population subdivision and limited gene flow. Here, we investigate how limited dispersal influences the rate 
of fixation of beneficial de novo mutations, as well as fixation time from standing genetic variation. We investigate this for a population struc-
tured according to the island model of dispersal allowing us to use the diffusion approximation, which we complement with simulations. We 
find that fixation may take on average fewer generations under limited dispersal than under panmixia when selection is moderate. This is es-
pecially the case if adaptation occurs from de novo recessive mutations, and dispersal is not too limited (such that approximately FST < 0.2). 
The reason is that mildly limited dispersal leads to only a moderate increase in effective population size (which slows down fixation), but is 
sufficient to cause a relative excess of homozygosity due to inbreeding, thereby exposing rare recessive alleles to selection (which accelerates 
fixation). We also explore the effect of metapopulation dynamics through local extinction followed by recolonization, finding that such dynam-
ics always accelerate fixation from standing genetic variation, while de novo mutations show faster fixation interspersed with longer waiting 
times. Finally, we discuss the implications of our results for the detection of sweeps, suggesting that limited dispersal mitigates the expected 
differences between the genetic signatures of sweeps involving recessive and dominant alleles.
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Introduction
Populations can adapt to their environment via the .xation of 
bene.cial alleles (Gillespie 1994; Kimura and Ohta 1971). 
Understanding the rate at which such .xation occurs has thus 
been a major goal for evolutionary biology (McCandlish and 
Stoltzfus 2014), as well as more applied biosciences, such as popu-
lation management and conservation (Wright et al. 2009). The 
rate of genetic adaptation of a diploid population is often quanti-
.ed with 2NTμPfix where NT is the population size, μ is the per- 
generation per-locus probability that a bene.cial mutation oc-
curs, and Pfix is the probability that it .xes (Kimura 1962, 1968; 
Kimura and Ohta 1971; Kryazhimskiy and Plotkin 2008; Lanfear 
et al. 2014). This assumes that the mutation rate μ is small, such 
that the time taken for a bene.cial allele to .x is negligible com-
pared to the waiting time before such a mutation arises. 
Nevertheless, the time a bene.cial allele takes to .x is in some 
cases relevant as it scales comparably to the number of genera-
tions it takes to arise, thus causing a slowdown in adaptation 
(e.g. in a large panmictic population, the .xation time of a muta-
tion causing a fecundity advantage s ≪ 1 scales with log (2NTs)/s, 
which compared with the expected time the mutation takes to 
arise, 1/[2NTμPfix] with Pfix = 2s, entails that .xation time is in-
creasingly relevant as 2NTμ log (2NTs) increases; Weissman and 
Barton 2012; Charlesworth 2020, 2022; for more general consid-
erations, see Hendry and Kinnison 1999). Additionally, because 
whether an allele .xes quickly or slowly inUuences the genetic sig-
natures of adaptation at surrounding loci, the time to .xation may 

be important in the detection of selected sites in the genomes of 
natural and experimental populations (Messer and Petrov 2013; 
Charlesworth 2020, 2022).

The probability that a bene.cial mutation .xes and the time it 
takes to do so both depend on an interplay between selection and 
genetic drift. This interplay is especially well understood under 
panmixia, i.e. where individuals mate and compete at random 
(Crow and Kimura 1970; Ewens 2004). In particular, because a 
rare allele is found almost exclusively in heterozygotes under 
panmixia, the probability of .xation of a single-copy de novo mu-
tation strongly depends on its genetic dominance (or penetrance). 
Dominant bene.cial alleles are more likely to .x than recessive 
ones as their effects are more immediately exposed to positive se-
lection (Haldane 1927). Population size, which scales inversely 
with genetic drift, increases .xation time (Kimura and Ohta 
1969), but tends to have limited effects on the probability that a 
newly arisen mutation will .x (Kimura 1962). In fact, the probabil-
ity of .xation of a de novo mutation becomes independent from 
population size in the limit of in.nite population size such that in-
vasion can be modeled as a branching process and invasion im-
plies .xation (Haldane 1927; Otto and Whitlock 2006).

Genetic adaptation is not restricted to the .xation of de novo 
mutations, but can also stem from standing genetic variation 
(Orr and Betancourt 2001; Hermisson and Pennings 2005; 
Pennings and Hermisson 2006a, 2006b; Barrett and Schluter 
2008; Hermisson and Pennings 2017). This standing variation is 
thought to be neutral or mildly deleterious until an environmental 
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change takes place such that it becomes bene.cial. The probability 
that such a variant .xes and the time it takes to do so are especially 
sensitive to its initial frequency, with greater frequency increasing 
the probability of .xation (Kimura 1962) and reducing the time ta-
ken to .x (Kimura and Ohta 1969). The initial frequency, in turn, 
depends on how selection and genetic drift shaped variation before 
it turned bene.cial, which has also been extensively studied in 
well-mixed populations (Kimura et al. 1963; Crow and Kimura 
1970; Orr and Betancourt 2001; Ewens 2004).

Many natural populations, however, are not well-mixed. The 
physical constraints on movement often cause dispersal to be lim-
ited, leading to genetic structure through limited gene Uow 
(Clobert et al. 2001). Such genetic structure is extremely wide-
spread though often mild with many estimates of among- 
populations genetic differentiation FST of the order of 0.1 (e.g. 
Ståhl 1981; Giles and Goudet 1997; Irvin et al. 1998; Potenko and 
Velikov 1998; Benzie 2000; Forstmeier et al. 2007; Tamaki et al. 
2008; Glover et al. 2013; Kumar and Singh 2017; pp. 302–303 in 
Hartl and Clark 2007 for an overview). Genetic structure inUu-
ences both drift and selection as it modulates effective population 
size Ne (Wang and Caballero 1999; Rousset 2004), and generates 
kin selection and inbreeding (Hamilton 1964; Frank 1998; 
Rousset 2004; Charlesworth and Charlesworth 2010). The inUu-
ence of inbreeding on genetic adaptation can be investigated 
independently by considering populations where sel.ng (or as-
sortative mating) takes place but that are otherwise well-mixed 
(so that there is no kin selection or competition, Glémin and 
Ronfort 2013; Newberry et al. 2016; Charlesworth 2020; Hart.eld 
and Bataillon 2020). These investigations show that sel.ng tends 
to speed up .xation as it causes both: (i) an increase in homozy-
gosity that exposes rare recessive alleles more readily to selection; 
as well as (ii) a decrease in effective population size that reduces 
the time to .xation.

How limited dispersal affects the probability of .xation 
through selection and drift is well studied in the island model of 
dispersal, showing for instance that the .xation probability of 
bene.cial alleles is increased by limited dispersal when recessive 
and decreased when dominant (Roze and Rousset 2003; Whitlock 
2003; Rousset 2004). Assuming that dispersal between demes is so 
rare that segregation time within demes can be ignored, Slatkin 
(1981) shows that limited dispersal always increases the time to 
.xation of de novo mutations. Using the diffusion approximation 
and thus considering segregation time within demes, Whitlock 
(2003) also reports that limited dispersal makes the total time to 
.xation increase, through an increase in Ne as well as in kin com-
petition (p. 778 in Whitlock 2003). Meanwhile, the implications of 
limited dispersal for the time taken by standing genetic variants to 
.x remain understudied (though see Paulose et al. 2019 for a dis-
cussion on this under isolation by distance).

Here, we contribute to this literature by investigating the rate of 
.xation of de novo and standing variants in subdivided popula-
tions. Firstly, we revisit the time to .xation of de novo mutations, 
complementing the analysis found in Whitlock (2003). We show 
that limited dispersal can in fact speed up .xation of non-additive 
alleles, as long as selection is not too weak and dispersal is mildly 
limited such that it generates FST < 0.2, which is typical of many 
natural populations. Secondly, we combine the waiting time and 
time to .xation to investigate the total rate of .xation from de 
novo mutations (as done in Glémin and Ronfort 2013 for sel.ng). 
Thirdly, we investigate the impact of limited dispersal on the 
time for standing variation to .x. Finally, we consider the inUu-
ence of metapopulation dynamics whereby subpopulations can 
go extinct and be recolonized.

Model
Life cycle, genotype, and fecundity
We consider a monoecious diploid population that is subdivided 
among Nd demes, each carrying a .xed number N of adult indivi-
duals (so that the total population size is NT = Nd · N). Generations 
are discrete and non-overlapping with the following life cycle oc-
curring at each generation: (i) Each adult produces a large number 
of gametes according to its fecundity and then dies. (ii) Each gam-
ete either remains in its natal deme with probability 1 − m or dis-
perses with probability m. We assume that m > 0 so that demes are 
not completely isolated from one another. Dispersal is uniform 
among demes, following the island model (Wright 1931). (iii) 
Finally, gametes fuse randomly within each deme to form zygotes 
that in turn compete uniformly within each deme for N breeding 
spots to become the adults of the next generation.

We are interested in evolution at an autosomal locus where two 
alleles segregate: a wild-type allele a and a bene.cial mutant allele 
A. An individual’s genotype determines its fecundity. As a baseline, 
aa individuals have a fecundity of 1, while relative to this, Aa and AA 
individuals have fecundity of 1 + hs and 1 + s, respectively. The 
parameters 0 ≤ h ≤ 1 and s > 0 thus capture the dominance and se-
lective effects of A, respectively. For simplicity, we assume through-
out the main text that selection is soft, i.e. that the same total 
number of gametes is produced in each deme. The case of hard 
selection is explored in our Supplementary File 1 where we show 
that our main results are not affected by whether selection is soft 
or hard.

Diffusion approximation
The dynamics of the frequency p of the allele A in the whole popula-
tion can be approximated by a diffusion process under the island 
model of dispersal (e.g. Barton 1993; Cherry 2003; Cherry and 
Wakeley 2003; Roze and Rousset 2003; Wakeley 2003; Whitlock 
2003; Wakeley and Takahashi 2004; Lessard 2009; note that one ca
not follow a single allele frequency when the population experiences 
isolation by distance, see Rousset 2004 for general considerations). 
We follow the framework developed in Roze and Rousset (2003), 
which assumes that selection is weak and that the number Nd of 
demes is large (i.e. s ∼ O δ( ) and Nd ∼ O 1/δ

􏼡 􏼢
where δ > 0 is small). 

If, in addition, demes are large and dispersal is weak (i.e. N → ∞ 
while m → 0 such that the number of immigrants Nm is of order 1), 
then allelic segregation within demes also follows a diffusion pro-
cess (e.g. Whitlock 2003). Here, we will in general allow for m to be 
arbitrarily large to investigate deviations from panmixia (i.e. from 
m = 1). The diffusion approximation is based on the expectation 
and variance in the change in p, which we describe below.

Expected frequency change
We show in Supplementary section A.1 in File 1 that the expected 
change in allele frequency p can be written as,

E[Δp |p] = sp(1 − p) p + rD
0 (1 − p)􏼣􏼤􏼤􏼤􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼤􏼤􏼤􏼧

direct effect in AA

+ h(1 − rD
0 )(1 − 2p)􏼣􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼧

direct effect in Aa

􏼨

􏼩

− (rR
1 + (rR

1 − aR)(2h − 1)(1 − 2p))􏼣􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼧
kin competition

􏼪

􏼫􏼬 + O δ2􏼡 􏼢
,

(1) 

where rD
0 is the probability that the two homologous genes of an 

individual are identical-by-descent (IBD); rR
1 is the probability 

that two genes sampled from the same deme with replacement 
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are IBD; aR is the probability that two homologous genes of an in-
dividual, plus a third gene sampled from the same deme at ran-
dom, are all IBD. These three coalescent probabilities are 
computed under neutrality (i.e. with δ = 0) and their expression 
in terms of dispersal and population size can be found in 
Table 1 (see Supplementary section A.3 in File 1 for derivations). 
Equation (1) is equivalent to eq. (23) of Roze and Rousset (2003)
after plugging in their .tness eq. (36) (and additionally using our 
Supplementary eq. A24 from File 1).

Equation (1) decomposes selection on allele A among three ef-
fects. These can be understood by .rst considering that in a well- 
mixed population (so that rD

0 = rR
1 = aR = 0), eq. (1) reduces to: 

E[Δp | p] = sp(1 − p)[p + h(1 − 2p)] + O δ2􏼡 􏼢
(Crow and Kimura 1970, 

p. 408). In this baseline expression, the .rst term within square 
brackets, p, captures selection on A owing to the effects of the al-
lele on the .tness of its bearer in homozygotes, while h(1 − 2p) cap-
tures selection through heterozygotes. When dispersal is limited, 
direct effects increase to p + rD

0 (1 − p) through homozygotes and 
decrease to h(1 − rD

0 )(1 − 2p) through heterozygotes in eq. (1). 
Selection through homozygotes is therefore more important un-
der limited dispersal. This is because mating within demes leads 
to inbreeding and therefore a relative excess of homozygotes 
and a de.cit of heterozygotes (according to rD

0 ).
The remaining terms of eq. (1)—labeled “kin competition”— 

capture a second effect of limited dispersal: that competing indi-
viduals are more likely to carry identical gene copies than ran-
domly sampled individuals. As shown by the negative sign in 
front of these terms in eq. (1), kin competition decreases selection 
on bene.cial alleles. This is because kin competition results in 
an individual’s reproductive success coming at the expense of 
genetic relatives. Equation (1) further shows that for additive 
alleles (h = 1/2), kin competition effects scale with rR

1 only. For 
non-additive alleles, however, these effects also depend on allele 
frequency p, with kin competition effects being stronger when 
dominant alleles are rare (h > 1/2 and p < 1/2) or when recessive 
alleles are common (h < 1/2 and p > 1/2).

In the limit of low dispersal and large demes (m → 0 and 
N → ∞), the pairwise probabilities of coalescence rD

0 and rR
1 are 

equal to FST (Rousset 2004) where FST = 1/(1 + 4Nm) (Wright 
1931), while the three-way probability of coalescence can be writ-
ten as aR = 2F2

ST/[1 + FST] (Whitlock 2002). As a result, eq. (1) can be 
expressed as

E[Δp | p] = sp(1 − p)
1 − FST
1 + FST

􏼭 􏼮􏼯
FST + (1 − FST)(p + h(1 − 2p))

⎛
+ O δ2􏼡 􏼢

, (2) 

which is the same as eq. (12) of Whitlock (2002) (with his η = 0; we 
compare the times to .xation computed with eq. 2 and with eq. 1
in Supplementary Fig. A in File 1, which shows overall good agree-
ment between the two with N = 100).

Variance in frequency change and effective population size
The variance in allele frequency change can be written in the form

V[Δp | p] = p(1 − p)
2Ne

+ O δ2􏼡 􏼢
, (3) 

where effective population size Ne for our model is given by eq. 
(28) of Roze and Rousset (2003),

Ne = NT

1 − rD
1

, (4) 

with rD
1 is the probability that two different genes sampled from 

the same deme are IBD. See Supplementary section A.2 in File 1
for derivation of eq. (4) and Table 1 for the probability rD

1 in terms 
of deme size and dispersal rate. The effective population size of 
eq. (4) can also be written in the low dispersal and large demes 
limit, such that rD

1 = rR
1 = FST. This substitution leads to the classic-

al expression, Ne = NT/(1 − FST) or Ne = NT[1 + 1/(4Nm)] (Wright 
and Teissier 1939; Whitlock and Barton 1997; Roze and Rousset 
2003; Whitlock 2003).

It may be useful to consider the scaled or “effective” selection 
gradient in the low dispersal and large demes limit, which reads as

γ(p) = E[Δp | p]
V[Δp | p]

→ NTs 1 + (2p − 1)(1 − 2h)
1 − FST

1 + FST

⎞ ⎡
(5) 

(using eq. 2–4). Two points are worth mentioning from eq. (5). 
First, it shows that it is relevant to scale the fecundity advantage 
s with the total population size NT when comparing the strength of 
selection among treatments. Second, it makes clear how effective 
selection depends on an interaction between allele frequency p 
and genetic dominance h that is modulated by gene Uow FST. In 
a well-mixed population such that FST = 0, γ(p) is greater when 
dominant alleles are rare (h > 1/2 and p < 1/2) or when recessive 
alleles are common (h < 1/2 and p > 1/2) compared to γ(p) for an 
additive allele (h = 1/2). By creating an excess of homozygosity, 
limited gene Uow mitigates these differences by a factor 
0 ≤ (1 − FST)/(1 + FST) ≤ 1.

Probability and time of mxation
From the scaled selection gradient γ(p), the probability of .xation 
Pfix(p0) of A with initial frequency p0 is given by

Pfix(p0) =
∫p0

0 exp −2 ∫x0 γ(p)dp
⎤ ⎣

dx

∫10 exp −2 ∫x0 γ(p)dp
⎤ ⎣

dx
(6) 

(Crow and Kimura 1970, p. 424). The expected number Tfix(p0) of 
generations that an allele takes to .x (conditional on its .xation) 
given that its frequency is p0 at generation t = 0 is,

Tfix(p0)

= 2Ne ∫1p0
ψ(x)Pfix(x)

􏼯
1 − Pfix(x)

⎛
dx + 1 − Pfix(p0)

Pfix(p0)
∫ p0

0 ψ(x)P2
fix(x)dx

⎞ ⎡
,

(7) 

Table 1. Probabilities of coalescence in the island model.

Symbol Expression Limit

rD
0

(1−m)2

2N−(1−m)2(2N−1)
1

1+4Nm

rD
1 ” ”

rR
1

1
2N + (1 − 1

2N )rD
1 ”

aR 1
N rD

0 + (1 − 1
N ) [1+3(2N−1)rD

1 ](1−m)3

(2N)2−(2N−1)(2N−2)(1−m)3
1

(1+4Nm)(1+2Nm)

Expressions for the various probabilities of coalescence that are relevant to the 
analysis, including their values in the limit of low dispersal and large patches 
(m→ 0 and N → ∞ such that Nm remains constant, see Supplementary section 
A.3 in File 1 for derivations). rD

0 is the probability that the two homologous genes 
of the same individual are IBD, which is equivalent to FIT in the island model of 
dispersal; rD

1 is the probability that two different genes sampled from the same 
deme are IBD, which is equivalent to FST in the island model of dispersal; rR

1 is 
the probability that two genes sampled from the same deme with replacement 
are IBD; and aR is the probability that two homologous genes of an individual 
coalesce with a third gene sampled from the same deme at random (Roze and 
Rousset 2003; Rousset 2004).
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with

ψ(x) = 2
x(1 − x)

·
∫10 exp −2 ∫z0 γ(p)dp

⎤ ⎣
dz

exp −2 ∫x0 γ(p)dp
⎤ ⎣ (8) 

(Crow and Kimura 1970, p. 430 with their ψ(x) scaled by 1/(2Ne)).
Equation (7) highlights how the time to .xation scales with 

2Ne (the “coalescent timescale”; Kimura 1962; Charlesworth 
2020), which depends on limited dispersal (eq. 4). There are 
therefore two main pathways for limited dispersal to inUuence 
the time to .xation: (i) by modulating the scaled selection gra-
dient for non-additive alleles (as seen most clearly in eq. 5); 
and (ii) by boosting effective population size (eq. 4). To investi-
gate this interaction, eqs. (6)–(8) were numerically integrated 
with R using the built-in function integrate (with maximum 

number of subdivisions increased to 100,000). The time to .x-
ation for non-additive alleles (h ≠ 1/2) involves an integral 
with an integrand that spans many orders of magnitude, which 
can be prone to instability during numerical analysis. In the 
case of report of bad integrand behavior, we translated integra-
tion limits by a small amount ϵ that we kept as low as possible 
(ϵ ≤ 10−5 always).

To calculate the time to .xation more straightforwardly, 
Charlesworth (2020) suggests an approximation based on a de-
composition of .xation dynamics between three phases: two sto-
chastic phases when p < p1 and p > p2 connected by a 
deterministic phase for p1 ≤ p ≤ p2 (following semideterministic 
approaches, e.g. Martin and Lambert 2015). This approximation 
can be summarized as

T↑fix(p0) = 4Ne
1 − p1

p1
log (1 − p1) + 1

⎞ ⎡

􏼣􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼧
initial stochastic phase

+ 1 − exp( − 1)
s0 + (1 − 2h)s1􏼣􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼧

final stochastic phase

+ 1
s0

log
s0

p1(s0 + (1 − 2h)s1)

⎞ ⎡
+ 1

s0 + (1 − 2h)s1
log

s0 + (1 − 2h)s1

(1 − p2)s0

⎞ ⎡

􏼣􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼧
deterministic phase

(9) 

(“initial stochastic phase” is on p. 758, “.nal stochastic phase” in 
Supplementary eq. A7, and “deterministic phase” in eq. 6b of 
Charlesworth 2020), where

p1 = 1
4Nes0

and p2 = 1 − 1
4Ne s0 + (1 − 2h)s1

⎦ ⎢ , (10) 

and s0 and s1 are de.ned from decomposing the expected fre-
quency change as E[Δp | p] = p(1 − p)[s0 + (1 − 2h)s1p], which by 
comparison with our eq. (1) yields,

s0 = s rD
0 − rR

1 + h 1 − rD
0

􏼡 􏼢
− rR

1 − aR􏼡 􏼢
2h − 1
􏼡 􏼢⎦ ⎢

(11a) 

s1 = s 1 − 2(rR
1 − aR) − rD

0
⎦ ⎢

. (11b) 

We will also use this approximation to compute .xation time.

Results
The antagonistic effects of limited dispersal on the 
time to mxation of de novo mutations
We .rst complement Whitlock (2003)’s analyses on the effects of 
limited dispersal on the time it takes for A to .x as a de novo muta-
tion (i.e. when arising as a single copy, Pfix(p0) with p0 = 1/(2NT)). 
Whitlock (2003) considers a fecundity advantage of s = 2 · 10−4 

such that NTs = 2, and shows that in this case, limited dispersal al-
ways increases the time to .xation by increasing effective popula-
tion size (due to the factor 2Ne in eq. 7; see also panel B in 
Supplementary Fig. A in File 1). We consider the case where selection 
is stronger, though still weak, where individuals that carry two cop-
ies of A experience a 1% increase in fecundity (s = 0.01) in a popula-
tion of 200 demes of 100 individuals (such that with NTs = 200 as in 
Roze and Rousset 2003; we consider other selection strengths later). 
We show that by modulating the interaction between selection and 
drift, limited dispersal can decrease the time to .xation in this case.

We integrated eq. (7) with p0 = 1/(2NT) for a range of dispersal m 
and dominance h values. Results of these calculations and of 
individual-based simulations are shown in Fig. 1. We .nd that 
the effect of limited dispersal on the time to .xation depends on 
the dominance of the bene.cial allele A. Where dominance is in-
complete (approximately 0.1 ≤ h ≤ 0.9, Fig. 1b), the expected time 

to .xation always increases as dispersal becomes more limited 
(Fig. 1a, blue). In contrast, the time to .xation of a partially dom-
inant (h > 0.9) or partially recessive (h < 0.1) allele initially de-
creases as dispersal becomes limited and only increases once 
past below a dispersal threshold (Fig. 1a, green and purple). The 
reason the time to .xation eventually increases when dispersal 
becomes severely limited (approx. Nm < 1 so that FST > 0.2 in 
Fig. 1a) is because Ne increases hyperbolically as dispersal de-
creases (recall Ne ∼ NT[1 + 1/(4Nm)], see below eq. 4). As a result, 
the effects of Ne on time to .xation overwhelms any other effects 
when dispersal becomes small. These results so far are consistent 
with those in Whitlock (2003), where selection is suf.ciently weak 
such that the effects of limited dispersal on the time to .xation are 
mostly through its effects on Ne (recall eq. 7).

Under mild dispersal limitation (approx. 1 < Nm < 100 such 
that FST ≤ 0.2), however, our results show that the increase in ef-
fective population size Ne can be outweighed by an increase in se-
lection, resulting in partially recessive and partially dominant 
alleles .xing more rapidly than under panmixia (Fig. 1a, dark 
gray line in b). The reason selection reduces the time to .xation 
here is because limited dispersal leads to inbreeding and thus a 
relative excess of homozygotes. How this excess boosts selection 
depends on whether the allele is recessive or dominant, as re-
vealed by considering an increase in rD

0 in eq. (1). For a recessive 
bene.cial allele A (h < 1/2), selection on A is greater when A is 
relatively rare (i.e. p < 1/2) because in this case, inbreeding creates 
a relative excess of AA homozygotes through which the recessive 
allele A can be picked up by selection. For a dominant bene.cial 
allele A (h > 1/2), the excess of homozygosity boosts selection at 
high frequency (i.e. p > 1/2) as it allows to purge more ef.ciently 
the deleterious (and recessive) a allele through an excess of aa in-
dividuals. These frequency-dependent effects are ampli.ed by kin 
competition as such competition is weaker and thus selection is 
stronger when a recessive allele is rare (h < 1/2 and p < 1/2) and 
a dominant allele is common (h > 1/2 and p > 1/2, see eq. [1]).

The frequency-dependent effects of limited dispersal on selec-
tion are reUected in the trajectory pro.les of recessive and domin-
ant alleles that .x (Fig. 1c). In a panmictic population, a recessive 
bene.cial allele tends to spend longer periods at low frequency 
(for enough homozygotes to appear) and a dominant allele at 
high frequency (for heterozygotes to be purged, Fig. 1c, top). 
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Under limited dispersal, however, these differences are mitigated 
as selection is increased at low frequency for recessive alleles and 
at high frequency for dominant alleles (e.g. eq. 5). As a result, the 
trajectory pro.les of bene.cial alleles that eventually .x become 
independent of their dominance as dispersal becomes limited 
(Fig. 1c, bottom). This can also be seen from the decomposition 
of the time to .xation into three relevant phases according to 
the semi-deterministic approximation eq. (9). As shown in Fig. 2, 
limited dispersal decreases the share of the time that recessive al-
leles spend in the initial stochastic phase (lower shaded region in 
top row of Fig. 2) and the share that dominant alleles spend in the 
.nal stochastic phase (top shaded region in bottom row of Fig. 2). 
In fact, owing to an excess homozygosity that reduces boundary 
effects at low and high frequency, the semi-deterministic approxi-
mation eq. (9) performs better under limited dispersal when 

alleles are recessive or dominant (compare black full and dashed 
gray lines in Fig. 2).

The above shows that limited dispersal can reduce the time to 
.xation of partially recessive and dominant alleles, provided the 
selection coef.cient is above some threshold. We investigate 
this threshold numerically in panel C in Supplementary Fig. A in 
File 1, which suggests that it is close to NTs = 50 (e.g. such that car-
rying two copies of the bene.cial allele causes a 0.25% increase in 
fecundity with Nd = 200 and N = 100). This value sits well within 
empirically estimated distribution of .tness effects (Eyre-Walker 
and Keightley 2007).

Although the time to .xation is useful for multiple reasons (e.g. 
Whitlock 2003; Glémin and Ronfort 2013; Charlesworth 2020, 
2022), it may not always provide a good reUection of the time for 
a population to show high mean fecundity, especially when 
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bene.cial alleles are dominant. To see this, we computed the ex-
pected time taken for the genetic load to drop to 10% in the whole 
population (τG), as well as within each deme (τL), using individual- 
based simulations (Fig. 3). We observe τG < τL < Tfix throughout, 
with their differences larger the greater h is. This is because 

dominant alleles confer high .tness in heterozygotic form and 
thus allow the population to show low load at lower frequency. 
Therefore, though limited dispersal reduces the time to .xation 
of both recessive and dominant bene.cial mutations, the time ta-
ken for the population to show high fecundity is reduced only for 
recessive alleles.

The impact of limited dispersal on the total time 
for de novo mutations to arise and mx
In addition to the number of generations taken for a bene.cial al-
lele to .x, another relevant consideration is how long it takes for 
such an allele to emerge. To capture this, we follow Glémin and 
Ronfort (2013) and quantify the total expected number Tnew of 
generations for an adaptive de novo mutation to .x in the popula-
tion by the sum of two terms:

Tnew = 1
2NTμPfix p0

􏼡 􏼢
􏼣􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼤􏼤􏼤􏼤􏼧

waiting time

+ Tfix p0
􏼡 􏼢

􏼣􏼤􏼤􏼤􏼥􏼦􏼤􏼤􏼤􏼧
fixation time

, (12) 

where μ is the mutation rate from a to A, and Pfix is the .xation 
probability of A when it arises as a single copy, i.e. when p0 = 
1/(2NT) (eq. 6 for the diffusion approximation to this probability). 
The .rst term is the expected number of generations for the emer-
gence of a bene.cial mutation that .xes, and the second is the ex-
pected number of generations taken by such .xation. The 
underlying assumption behind using eq. (12) is that bene.cial mu-
tations appear at a per-site per-generation rate μ that is such that 
new mutations segregate independently (as in e.g. Gillespie 1994’s 
strong-selection weak-mutation regime).

The waiting time is inversely proportional to the .xation prob-
ability Pfix, whose dependence on limited dispersal is well known: 
while limited dispersal has no inUuence on the probability of .x-
ation of additive alleles, it increases (respectively, decreases) the 
probability that a recessive (dominant) bene.cial allele .xes 
(Roze and Rousset 2003; Whitlock 2003). Hence, the waiting time 
for a .xing additive allele is not affected by limited dispersal, 
but is reduced for a recessive allele and increased for a dominant 
allele (Fig. 4a). Accordingly, the total number of generations Tnew 
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Fig. 2. Semi-deterministic approximation to .xation time under limited 
dispersal. Solid black lines show Charlesworth (2020)’s approximation to 
the expected time to .xation T↑fix (eq. 9) of partially recessive 
(h = 0.01, 0.05, 0.1; top row) and partially dominant (h = 0.9, 0.95, 0.99; 
bottom row) alleles arising as single copies p0 = 1/(2NT); and dashed gray 
lines show numerical integration of eq. (7). Shaded regions below curve 
represent the proportion of time spend in each phase of the approximation 
of eq. (9), from bottom to top: initial stochastic phase (dark shade), 
deterministic phase (light shade), .nal stochastic phase (dark shade). The 
shaded gray areas in top left (h = 0.01) and bottom right (h = 0.99) graphs 
indicate where eq. (9) diverges. Other parameters: same as Fig. 1.

Fig. 3. Expected time to purge 90% of the genetic load. We de.ne the genetic load as L = (1 + s − z)/s, i.e. as the difference between the population mean 
fecundity, z (Supplementary eq. A10 in File 1), and the maximum fecundity, 1 + s, normalized such that a population monomorphic for the wild-type 
allele, aa (z = 1), has L = 1, while a population where the bene.cial mutation A has .xed has no genetic load, L = 0. We also de.ne a local genetic load Li in 
each deme i as Li = (1 + s − zi)/s, where zi is the mean fecundity at deme i (Supplementary eq. A8). Plots show the average time to .xation Tfix (thick line), 
average time to purge 90% of the load τG, i.e. average time for L = 0.1 (thin line), and average time to purge 90% of genetic load in every deme τL, i.e. average 
time for maxiLi = 0.1 (dashed line), for recessive (h = 0), additive (h = 0.5) and (partially) dominant (h = 0.75, 0.9 and 1) alleles (in different columns) arising 
as single copies p0 = 1/(2NT) in individual-based simulations (Supplementary section B in File 1 for details). Other parameters: same as Fig. 1.
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for .xation always increases with limited dispersal when such an 
allele is additive (as Tfix increases, previous section, Fig. 4a central 
column). Recessive alleles, meanwhile, bene.t from limited dis-
persal in two ways, as limited dispersal not only reduces the 
time to .xation (provided that dispersal is not too limited) but 
also the waiting time for such a .xing allele to appear. This results 
in a signi.cant drop in the total time for .xation as dispersal be-
comes limited, before eventually increasing under severely lim-
ited dispersal (Fig. 4a left column).

The case of dominant alleles is more complicated as on one 
hand limited dispersal increases the waiting time, but on the other 
reduces the time to .xation (previous section and Fig. 4a right col-
umn). The balance between these opposing effects depends on the 
mutation rate μ. When this rate is very small, the waiting time 
dominates eq. (12) so that limited dispersal always increases the 
total time Tnew for dominant alleles to .x (Fig. 4a top right). As 
the mutation rate increases, however, the time to .xation 
becomes more relevant in eq. (12) so that limited dispersal may 
reduce total time Tnew, though less so than for recessive alleles 
(Fig. 4a bottom right).

Overall, we thus .nd that the rate of .xation of adaptive alleles 
depends on the interaction between the dominance h of these al-
leles and dispersal m. To see this more de.nitively, we compare 
Tnew across levels of dispersal and dominance with Tnew under 
panmixia in Fig. 4b for a mutation rate of NTμ = 0.02. This .gure 
shows that, for this set of parameters, the total time for the .x-
ation of de novo mutations can be up to four times more rapid un-
der limited dispersal compared to panmixia when bene.cial 
alleles are recessive (Fig. 4b, dark purple region, dotted black 
lines). The effect for dominant alleles, although weaker, is still 
non-negligible with .xation up to 30% faster under limited disper-
sal (Fig. 4b, light purple region where h > 0.5). Below a dispersal 
threshold, however, .xation is slower whatever the dominance 
of bene.cial alleles (Fig. 4b, green region).

Fixation from standing variation: limited 
dispersal and dominance reversal
To investigate .xation from standing genetic variation, we now let 
the initial frequency of allele A in the whole global population 
p0 be a random variable, whose distribution is determined 
by assuming that A is initially deleterious, maintained at a 
mutation-selection-drift equilibrium until an environmental 
change takes place that causes A to become bene.cial (following 
Orr and Betancourt 2001; Hermisson and Pennings 2005, 2017; Orr 
and Unckless 2008; Glémin and Ronfort 2013). Given a realization 
p0, the initial frequency in each deme when environment changes 
is thus on average p0 but there is variation among demes, i.e. there 
is genetic differentiation among demes due to local sampling ef-
fects. The expected number of generations taken for .xation is 
now computed as

Tsgv= ∫10 Tfix(p0)ϕ(p0) dp0, (13) 

where ϕ(p0) is the probability density function for the frequency p0 

of allele A in the whole population at the time of the environmen-
tal change when allele A becomes bene.cial. This distribution 
ϕ(p0) can be calculated at mutation-selection-drift equilibrium 
using the diffusion approximation (Supplementary eq. A49). 
Prior to the environmental change, allele A is deleterious such 
that aa, Aa and AA individuals have fecundity of 1, 1 − hDsD, and 
1 − sD, respectively, while mutations from a to A, and from A to 
a, occur at rate μ. Population structure and dispersal rate are 

assumed to be the same before and after the environmental 
change. We computed eq. (13) numerically under different values 
of genetic dominance before (hD) and after (h) the environmental 
change and various dispersal rates (m).

Let us .rst consider scenarios where the dominance of A is pre-
served before and after the environmental change (i.e. hD = h). We 
.nd that under mildly limited dispersal, .xation takes longer 
when A is additive and shorter time when A is dominant (Fig. 5a 
blue and green). Thus, limited dispersal has the same effect on 
the time for A to .x as a standing genetic variant than on the total 
time Tnew for A to .x as a de novo mutation (provided mutation is 
strong enough so that waiting time does not dominate Tnew when 
A is dominant). By contrast, whereas limited dispersal can lead to 
shorter time Tnew for A to .x as a de novo mutation when 

100

10

1

0.1

0.01

1

0
Recessive

0.25 0.5
Additive

0.75 1
Dominant

Genetic dominance, h

N
m

1/4

1/2

1

2

4

Tnew Tnew
WM(b)

Nm

G
en

er
at

io
ns

2·10-4

2·10-2

(a)
h = 0 h = 0.5

Waiting
time

Fixation
time

0.01 1 100 0.01 1 100 0.01 1 100

1

102

104

106

1

102

104

106

h = 1 NTμTnew

Fig. 4. Total time before a de novo mutation arises and .xes under limited 
dispersal. a) Expected total time Tnew of .xation (on a log scale) of a 
recessive (h = 0, left), additive (h = 0.5, middle) and dominant (h = 1, right) 
de novo mutation p0 = 1/(2NT) for different mutation rates (NTμ = 2 · 10−4, 
top; NTμ = 2 · 10−2, bottom), with solid black lines from eq. (12) (with eqs. 
6–7). Dark and light gray shades underneath curves represent the 
proportion of time spent in each component of Tnew (on a linear scale). 
Parameters: same as Fig. 1. b) Effect of population subdivision on the total 
time to .xation according to scaled dispersal rate Nm and genetic 
dominance h. Ratio between the expected time to .xation of de novo 
mutations under limited dispersal Tnew and panmixia (TWM
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recessive, it always increases the time Tsgv for A to .x as a standing 
genetic variant (Fig. 5a purple). To understand this, recall that 
when the frequency of a bene.cial recessive allele A is low, disper-
sal limitation speeds up the segregation of that allele by producing 
an excess of homozygotes AA. If such an allele is initially deleteri-
ous and recessive, however, its initial frequency p0 tends to be 
higher at the moment of environmental change. Consequently, 
the allele is likely to already exist in the homozygous form when 
it becomes bene.cial, and thus is easily picked up by selection re-
gardless of limited dispersal (Fig. 5b purple for the distribution 
ϕ(p0)). Similarly to de novo mutations, the sweeping trajectories 
of standing genetic variants with different levels of dominance 
also become more similar as dispersal is reduced, in fact 

converging to the trajectories of recessive alleles under panmixia 
(compare top and bottom of Fig. 5c).

One scenario that has been argued to be particularly relevant in 
the context of .xation from standing genetic variation is that of 
dominance reversal, whereby an initially recessive deleterious al-
lele (hD = 0) becomes bene.cial and dominant (h = 1) in the new 
environment (Muralidhar and Veller 2022). This facilitates .x-
ation because at mutation-selection-drift equilibrium, a recessive 
deleterious allele can be maintained at signi.cant frequency, 
such that it can be readily picked up by selection when it turns 
bene.cial, especially if it simultaneously becomes dominant. 
Comparing the case where A is additive before and after the envir-
onmental change, with the case where it shifts from being 

(a)

(c)

(b)

Fig. 5. Fixation times of standing genetic variants. a) Expected time Tsgv of .xation (on a log scale) of a standing recessive (h = 0), additive (h = 0.5) and 
dominant (h = 1) variants (in different colors, see legend) with solid lines from diffusion approximation (eq. 13 with eqs. 7 and Supplementary A49), and 
dots for the average from individual-based simulations (300 replicates for each set of parameters, Supplementary section B in File 1 for details; we do not 
show standard deviations of simulations here as they are typically large and therefore lead to an overcrowded .gure; this is because Tsgv is affected by two 
sources of variance: variance in p0 and in the time to .xation). Parameters: sD = 10−3, NTμ = 2, hD = h, other parameters: same as Fig. 1. b) Distribution of 
initial frequencies ϕ(p0) at the moment of environmental change in a well-mixed (top, Nm = 100) and dispersal-limited (bottom, Nm = 0.1) population. 
Vertical bars represent histograms of simulations and lines from diffusion approximation (Supplementary eq. A49 in File 1). Note that the diffusion 
approximation fares less well when Nm = 0.1 as dispersal is much weaker than selection (Roze and Rousset 2003; Wakeley 2003). Parameters: same as a. c) 
Fixation of standing genetic variants in a well-mixed (top, Nm = 100) and a dispersal-limited (bottom, Nm = 0.1) population. Environmental change takes 
place at t = 0 (dashed vertical line). For each level of dominance (in different colors, see a for legend), thin lines show ten randomly sampled trajectories, 
thick lines show the mean trajectory among all trajectories. Parameters: same as a.
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recessive to dominant, we see that limited dispersal reduces the 
effects of dominance reversal (Fig. 6a). This is because limited dis-
persal, through an excess of homozygosity, diminishes the effects 
of dominance on both: (i) the expected frequency p0 at which the 
deleterious allele is maintained before environmental change; 
and (ii) selection when bene.cial. In fact, as dispersal becomes in-
creasingly limited, the trajectory pro.les of alleles that experience 
a dominance shift become almost indistinguishable from the pro-
.les of alleles that did not (Fig. 6b).

Longer waiting but faster mxation under 
extinction–recolonization
We have assumed that demes are of .xed and constant size. But 
deme extinctions, whereby entire local populations vanish and 
their habitat is made available for recolonization, are ecologically 
and evolutionarily relevant as they modulate the consequences of 
dispersal (Pannell and Charlesworth 1999; Rousset 2004). To ex-
plore how the interplay between extinction–recolonization and 
limited dispersal inUuences .xation times, we assume that before 
step (i) of the life cycle (see Model), each deme independently goes 
extinct with a probability 0 ≤ e < 1, in which case all individuals 
present in that deme die before producing any gamete 
(Supplementary section C in File 1 for details). Each extinct 
deme is then available for recolonization by 2N gametes from ex-
tant demes during dispersal. We sample these 2N gametes in two 
ways to examine contrasting scenarios of recolonization (as in 
Slatkin 1977; Whitlock and McCauley 1990): (i) in the propagule 
model, gametes are sampled from the gametic pool of a single ex-
tant deme, which is chosen at random among all extant demes; 
while (ii) in the migrant pool model, gametes are sampled from 
the joint gametic pool of all extant demes.

We look at the total time taken for a de novo bene.cial muta-
tion to .x, Tnew (eq. 12), which depends on the waiting time for a 
.xing allele to arise and on the time to .xation (Fig. 7a). We .nd 
that deme extinctions tend to have limited effects on Tnew, unless 
the mode of recolonization follows the propagule model and dis-
persal is strongly limited (third row of Fig. 7a). In this case, Tnew 

is greater under deme extinctions mostly due to an inUation in 
waiting time. This is because by increasing the covariance in allele 
frequency among demes, extinction–recolonization dynamics re-
duces effective population size relative to census size (Fig. 7b; 
Slatkin 1977; Whitlock and McCauley 1990; Barton 1993; Barton 
and Whitlock 1997). This reduction is especially signi.cant under 
the propagule model because in this case, a recolonized deme and 
the deme of origin for the propagule have the same allele fre-
quency on average, which boosts the covariance among demes 
(Fig. 7b, bottom). The resulting increase in genetic drift reduces 
the .xation probability of bene.cial alleles, and thus in turn, in-
creases the waiting time (.rst term of eq. 12; Fig. 7c, bottom). 
The increase in genetic drift also causes a reduction in .xation 
time (second term of eq. 12), but this does not compensate for 
the inUated waiting time in the case of propagule recolonization 
(Fig. 7a). Altogether, our results indicate that adaptation from de 
novo mutations is characterized by faster .xations separated by 
longer waiting times under extinction–recolonization dynamics.

In contrast to .xation of de novo mutations, extinctions almost 
always reduce the expected number of generations a bene.cial al-
lele from standing genetic variation takes to .x, Tsgv (eq. 13, 
Fig. 7d). This is because the waiting time is no longer relevant 
when the allele is already present in the population. In fact, the re-
duction in Ne owing to extinction–recolonization dynamics accel-
erates adaptation as it both: (i) reduces .xation time; and (ii) leads 
to on average a greater frequency p0 of A at the time of 

environmental change. As a result, .xation of standing genetic 
variants can be signi.cantly quicker when extinctions are com-
mon and recolonization follows the propagule model (Fig. 7d, 
bottom).

Discussion
Our analyses indicate that limited dispersal can accelerate the .x-
ation of bene.cial de novo alleles when: (i) dispersal is mildly limited; 
and (ii) allelic effects on .tness are not too weak and are far from 
additive (e.g. h < 0.1 or h > 0.9 in Fig. 1b). This may be relevant to nat-
ural populations as the dispersal rates under which we found that 
recessive and dominant mutations .x quicker than under panmixia 
lead to FST levels that agree with estimates from a wide range of taxa 
(roughly Nm > 1 so on average 1 or more migrants per generation, 
leading to FST < 0.2, Fig. 1a and b; e.g. .sh, Ståhl 1981; Glover et al. 
2013; crustaceans, Benzie 2000; plants, Giles and Goudet 1997; 
Potenko and Velikov 1998; Tamaki et al. 2008; insects, Irvin et al. 
1998; Kumar and Singh 2017; birds, Forstmeier et al. 2007; pp. 302– 
303 in Hartl and Clark 2007 for an overview). Additionally, the notion 

(a)

(b)

Fig. 6. The effects of dominance reversal under limited dispersal. a) 
Expected time Tsgv of .xation (on a log scale) of recessive deleterious 
alleles that become bene.cial dominant (hD = 0 and h = 1, in different 
colors, see legend), and of additive alleles (hD = h = 0.5, see legend) with 
solid lines from diffusion approximation (eq. 13 with eqs. 7 and 
Supplementary A49), and dots for the average from individual based 
simulations (300 replicates for each set of parameters, Supplementary 
section B in File 1 for details). Parameters: same as Fig. 5. b) Fixation 
trajectories of alleles showing dominance reversal (hD = 0 and h = 1) and 
additive alleles (hD = h = 0.5, see a for legend) in a well-mixed (top, 
Nm = 100) and dispersal-limited (bottom, Nm = 0.1) population. 
Environmental change takes place at t = 0 (dashed vertical line). For each 
scenario (in different colors, see a for legend), thin lines show 10 randomly 
sampled trajectories, and thick lines show the mean trajectory among all 
trajectories. Parameters: same as a.
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that alleles have non-additive .tness effects is supported by mul-
tiple lines of evidence, both theoretical (Fisher 1928; Wright 1934; 
Kacser and Burns 1981; Manna et al. 2011; Billiard et al. 2021) and em-
pirical, with mutations thought to be often at least partially reces-
sive, with an average dominance coef.cient h close to 0.2 (Mukai 
et al. 1972; Agrawal and Whitlock 2011; Huber et al. 2018; reviewed 
in Orr 2010; Li and Bank 2023). Further, the selection coef.cient 
that is required to observe a decrease in the time to .xation under 
limited dispersal (NTs greater than 50) sits well within empirically es-
timated .tness effects (Eyre-Walker and Keightley 2007). We consid-
ered speci.cally the case where NTs = 200 in our main text .gures, 
which corresponds to a 1% increase in fecundity due to a single sub-
stitution in Nd = 200 demes of N = 100 individuals (as in Roze and 
Rousset 2003). We tested the effect of stronger selection with simu-
lations whose results are shown in Supplementary Fig. B in File 1. 
These show similar patterns to our baseline model, i.e. mild disper-
sal limitation speeds up .xation when alleles are recessive or dom-
inant. In fact, strong selection tends to amplify this effect 
(Supplementary Fig. B in File 1).

In addition to the time to .xation, the pace of adaptation also 
depends on the waiting time for a .xing mutation to appear (eq. 
12; Glémin and Ronfort 2013). Because limited dispersal reduces 
most signi.cantly the waiting time for a .xing recessive allele to 
appear, the total time for a de novo mutation to .x is most shor-
tened when bene.cial alleles are recessive (purple region in 
Fig. 4b). Overall, our results thus suggest that with all else being 
equal, a subdivided population should be better adapted and 
show greater mean fecundity than a panmictic population, pro-
vided dispersal is only mildly limited and adaptation is driven by 
recessive de novo mutations.

In contrast, limited dispersal always slows down .xation of 
standing genetic variants that are recessive before and after 
they become bene.cial due to an environmental change (Fig. 5a, 
purple line). Rather, mild dispersal limitation tends to accelerate 
the .xation of dominant alleles here (Fig. 5a, green line). This is be-
cause limited dispersal leads to a greater boost in frequency of a 
deleterious allele when it is dominant compared to when it is re-
cessive (Fig. 5b, compare top to bottom). Nevertheless, the time ta-
ken for dominant genetic variants to .x in response to changes in 
selective pressures is typically greater than recessive variants, al-
though limited dispersal tends to reduce this difference (Fig. 5a).

More broadly, limited dispersal diminishes the importance of 
genetic dominance on the time taken by alleles to .x. This is in 
part because limited dispersal leads to inbreeding, which causes 
an excess of homozygotes whose fecundity does not depend on 
genetic dominance. Models involving partial sel.ng (or assortative 
mating), which also causes elevated homozygosity, similarly 
found lesser importance of dominance for .xation (Roze and 
Rousset 2004; Glémin and Ronfort 2013; Newberry et al. 2016; 
Charlesworth 2020; Hart.eld and Bataillon 2020). Our model, 
however, contrasts with these scenarios because limited dispersal 
also: (i) leads to kin competition, which reduces the overall 
strength of selection; and (ii) increases effective population size 
Ne whereas sel.ng alone reduces Ne. These two effects explain 
why strongly limited dispersal always delays .xation, whereas 
sel.ng generally speeds up .xation (Roze and Rousset 2004; 
Glémin and Ronfort 2013; Newberry et al. 2016; Charlesworth 
2020; Hart.eld and Bataillon 2020). In fact, our results under ex-
tinction–recolonization dynamics align more closely with those 
under sel.ng as limited dispersal reduces Ne when extinctions 
are suf.ciently common (Fig. 7b).
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Expected total time Tnew of .xation (on a log scale) of recessive (h = 0, left), 
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p0 = 1/(2NT), for different dispersal rates (Nm = 10 in bottom, and 0.1 in 
top) and recolonization models (migrant pool model in top row and 
propagule model in bottom, also for panels b–d), from eq. (12) (with eqs. 6
and 7). Parameters: same as Fig. 1. b) Effective population size relative to 
census size, Ne/NT (from Supplementary eq. C4 in File 1). Dashed line for 
Nm = 10 and full line for Nm = 0.1 (also for panels c–d). Parameters: same 
as a. c) Fixation probabilities normalized to initial frequency p0 of 
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colors, see legend) arising as single copies p0 = 1/(2NT), from eq. (6) with 
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Supplementary A49). The case h = 1 with Nm = 0.1 is omitted as 
comparisons with simulations showed a poor .t (Supplementary Fig. C1 
in File 1). Parameters: same as Fig. 5.
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Through its effects on time to .xation, limited dispersal may 
have implications for the signature of selective sweeps. The idea 
behind this is that when a selected allele goes to .xation more rap-
idly, there are fewer opportunities for recombination so that gen-
etic diversity at nearby neutral sites tends to be reduced, leading 
to what is referred to as a hard sweep; whereas when .xation is 
slow, recombination is more likely to break the association be-
tween an adaptive allele and its original background before .x-
ation, leading to a soft sweep (Hermisson and Pennings 2005, 
2017; Messer and Petrov 2013; Jensen 2014). More speci.cally, the 
linkage disequilibrium between a new bene.cial allele and a linked 
neutral allele decreases at a rate given by their recombination rate 
r in a large well-mixed population, i.e. linkage disequilibrium de-
cays as exp(−rt), where t is the number of generations that the .x-
ing allele takes to rise to high frequency (Smith and Haigh 1974; 
Barton 2000). Accordingly, the probability of observing a hard 
sweep is lower under limited dispersal if limited dispersal in-
creases t (Barton 2000; Pennings and Hermisson 2006a; Kim and 
Maruki 2011). However, modeling studies have found contrasting 
effects of limited dispersal on the signature of sweeps, which is 
typically quanti.ed by FST at linked neutral loci. In fact, the .xation 
of a bene.cial allele can increase or decrease FST, depending on ini-
tial conditions and on dominance (Slatkin and Wiehe 1998; 
Santiago and Caballero 2005; Teshima and Przeworski 2006; Roze 
and Rousset 2008; Ewing et al. 2011; Kim and Maruki 2011). In par-
ticular, FST at linked neutral loci is expected to increase when a re-
cessive allele sweeps, whereas FST is expected to decrease when a 
dominant allele sweeps (eq. 79 in Roze and Rousset 2008). We per-
formed simulations of evolution at two linked loci where one is 
neutral and initially polymorphic, and the other is under positive 
selection (Supplementary section D in File 1 for details). The re-
sults we .nd align with those of Roze and Rousset (2008). When 
bene.cial alleles are additive, dispersal has no effect on the prob-
ability of observing a hard sweep, i.e. on the probability that the 
polymorphism at the neutral locus is lost with .xation of the bene-
.cial allele (blue line in panel A, Supplementary Fig. C in File 1). 
This is because although the time to .xation is greater, and so 
are recombination opportunities under limited dispersal, most of 
the new haplotypes created by recombination are lost due to local 
drift within demes (panel B, Supplementary Fig. C in File 1). 
Meanwhile, limited dispersal increases the probability of observ-
ing a hard sweep for a recessive allele and decreases it for a dom-
inant allele so that these probabilities converge to that of an 
additive allele (purple and green lines in panel A, Supplementary 
Fig. C in File 1). This is because limited dispersal decreases (re-
spectively, increases) the proportion of time that a recessive (dom-
inant) allele spends at low frequency (Fig. 2), thus affecting the 
recombination opportunities with new backgrounds for these 
alleles.

The association between a selected allele and its original back-
ground can also be broken when recurrent mutations create bene-
.cial mutations that are identical-by-state and that .x with 
different backgrounds (Pennings and Hermisson 2006b; Ralph 
and Coop 2010; Paulose et al. 2019). How likely this is to happen 
can be inferred from comparing the waiting and .xation time 
(eq. 12). If the .xation time is long compared to waiting time, 
then recurrent mutations should be more likely to lead to a soft 
sweep. Inspection of Fig. 4 reveals that the time to .xation can be-
come longer than the waiting time as dispersal becomes more lim-
ited, especially if mutations are common. This suggests that 
limited dispersal may favor soft sweeps through recurrent muta-
tions. To investigate more de.nitively how limited dispersal af-
fects the signature of sweeps, it would be interesting to extend 

our model to consider multiple linked loci (e.g. extending Roze 
and Rousset 2008 to .nite number of demes or Lehmann and 
Rousset 2009 to limited dispersal).

Finally, our results are based on several assumptions. First, we 
assumed that dispersal is gametic, which is relevant for plant and 
marine taxa but less so for terrestrial animals where it is often zy-
gotes that disperse. But provided that mating is random within 
demes and demes are large enough, allelic segregation is similar 
under gametic and zygotic dispersal (Roze and Rousset 2003). 
Second, we assumed that selection is soft, i.e. that each deme pro-
duces the same number of gametes. We explore the case of hard 
selection in Supplementary section E in File 1 such that demes 
showing greater frequency of allele A produce more gametes. 
Hard selection reduces by a small margin the time to .xation, 
but does not affect our results otherwise (Supplementary Fig. E1 
in File 1). Third, the diffusion approximation also relies on the as-
sumption that demes are homogeneous and that dispersal is uni-
form among them (i.e. no isolation-by-distance). Isolation by 
distance in principle delays .xation (Rousset 2006), unless demes 
show speci.c patterns of connectivity that create sources and 
sinks that may facilitate .xation (e.g. Marrec et al. 2021). Fourth, 
we focused on the expectation of the number of generations taken 
for .xation, which may be misleading if the underlying distribu-
tion is fat tailed and skewed towards large values. To check for 
this, we computed the median time to .xation using individual- 
based simulations. We found that the mean and the median are 
close, indicating that the distribution of times to .xation is fairly 
symmetrical around the mean (Supplementary Fig. D in File 1).
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